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We present here exact analytic results for a random walk on a one-dimen- 
sional lattice with asymmetric, exponentially distributed jump probabilities. 
We derive the generating functions of such a walk for a perfect lattice and 
for a lattice with absorbing boundaries. We obtain solutions for some inter- 
esting moment properties, such as mean first passage time, drift velocity, 
dispersion, and branching ratio for absorption. The symmetric exponential 
walk is solved as a special case. The scaling of the mean first passage time 
with the size of the system for the exponentially distributed walk is deter- 
mined by the symmetry and is independent of the range. 

KEY W O R D S :  Random walks; stochastic processes; exponential 
models; mean first passage time; branching ratio. 

1. I N T R O D U C T I O N  

The theory  of  s tochast ic  processes has been successfully appl ied  to a number  
of  physical  and  chemical  p rob lems  which can be mode led  by  mas te r  equat ions  
or  r a n d o m  walks.  (1) The wide range o f  appl icab i l i ty  of  s tochast ic  models  has 
spurred  considerable  advances  in analyt ic  solut ions  of  the ma themat i ca l  
models ,  (2) which for  the mos t  pa r t  are  res t r ic ted to neares t -ne ighbor  t ransi-  
t ions.  However ,  in many  p rob lems  of  exper imenta l  interest  the  long-range  
t ransi t ions  cannot  be neglected.  A n  example  is the case o f  molecu la r  re- 
laxat ion,  ~3~ where mu l t i quan tum t rans i t ions  are  c o m m o n  and  a nearest-  
ne ighbor  app rox ima t ion  m a y  be insufficient. The  realist ic descr ip t ion  o f  
un imolecu la r  react ions,  (4~ b imolecu la r  react ions,  ~5) and chemical  lasers ~6~ 
requires s tochast ic  models  with nonnegl igible  long-range  t rans i t ion  p r o b -  
abilit ies,  which so far  have been mos t ly  deal t  with by numer ica l  methods .  
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In this paper we present an analysis of a random walk on one-dimensional 
stochastic space with asymmetric exponential transition probabilities charac- 
terized by two parameters which control the degree of asymmetry and the 
range of transitions. Possible applications are molecular processes, electron 
hopping or exciton migration, and transport phenomena in the presence of 
gradients in temperature or concentration. 

The choice of a random walk, rather than of a master equation, formu- 
lation, which is more natural in many problems of interest, was determined 
by the existing theory of MontrollJ 2~ The choice is not restrictive, as these two 
formulations have been shown to be equivalent ~7) provided that the time 
between the steps of a random walk is a Poisson process with the distri- 
bution ~b(t)= (l/~-~)e-t/~l, and the random walk transition matrix M is 
related to the master equation transition matrix A by M = ~'~A + 1. A 
consequence of this is that, in general, it is impossible to have zero diagonal 
elements of M, with the exception of the case when all diagonal elements of 
A are equal and r~ is chosen so that r~A** = - 1 .  

An exponential model has been previously treated in an elegant paper by 
Lakatos-Lindenberg and Shuler, (a) who considered a symmetric random 
walk with zero probability of staying at a given site, i.e., zero diagonal 
elements of M. In the present model the restriction of symmetry is removed; 
furthermore, a nonzero probability of staying at a site is assumed. However, 
since in the present model the diagonal elements of the transition matrix 
in the master equation formulation are all equal, the choice of diagonal 
elements of M is quite arbitrary if one is interested in the solution of the 
master equation. Both the analysis in Ref. 8 and the present study are based 
on MontroU's theory of random walks, ~2) which is valid only for translation- 
ally invariant transition probabilities. 

We consider a one-dimensional stochastic space with two absorbing 
branches which consist of traps (probability of leaving a trapping site is 
zero). Thus this model is applicable to situations in which there are two 
channels available for escape. In addition to definitions needed for sub- 
sequent analysis, Section 2 contains a derivation of a general relation between 
the generating function for the random walk on a perfect lattice (without 
traps) and that on a lattice with trapping sites. Since the former can be easily 
evaluated for translationally invariant transition probabilities with Montroll's 
formulas, (2~ this relation enables one to find the latter in a relatively simple 
manner. Next we derive an expression for the mean first passage time for 
absorption (MFPT) in terms of the generating function for a lattice with 
traps. The specific model treated is introduced in detail in Section 3. Since 
the calculations in this paper are rather lengthy, they have been relegated 
to appendices and only final results are given in Section 3. Thus after solving 
for the generating functions, we compute the MFPT, the branching ratio 
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(relative absorption in the two branches), the drift velocity, and the dis- 
persion around the origin. We compare the results with those of the sym- 
metric exponential, as well as nearest-neighbor, models. We show that the 
asymmetry in the transition probabilities has some interesting and rather 
unexpected consequences, which do not depend on the range of the jumps. 
The results are discussed in the last section. 

2. THE G E N E R A T I N G  F U N C T I O N S  

2.1, In t roductory  Def in i t ions 

Consider a perfect lattice and a random walk where the probability of 
jumping from site l '  to l is denoted by p(l, l'). Let P,(/, lo) be the probability 
of being at site l after the nth step, with Po(l, lo) = 3~.Zo. The normalization 
conditions are 

~f~p(l, l') = 1 (1) 
I 

~ P , ( I ,  lo) = 1 (2) 

Define now the generating function for the perfect lattice, G(z, l, 1o), 

a(z, 1, lo) =- ~ z'~e,~(l, to) (3) 
g = O  

We restrict ourselves to problems with translational invariance, i.e., 

p(1, l') = p(l - l') (4) 

where l ' is the initial and l the final state in a given jump. With this choice, 
Eq. (3) can be evaluated with the help of Montroll's theory, (2) 

1 fz e-~(t-to)r O(z, l, lo) = O(z, l - 1o) = G _, 1 -za(q~) d4 (5) 

where 

so that 

h(~)= ~ p(k)e ik~, k= 1-  l' (6) 
/ r  - - o 0  

1 h~(~)e-,(z-zo,~ d~ (7) e ~ ( / - / o )  = G _~ 

Define Q,~(l, lo) to be the probability of being at site l after the nth step in the 
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traps, with Qo(l, lo )=  8z,~o. The corresponding generating 

F(z, l, lo) = ~ z'~Q~(l, lo) (8) 
n = 0  

The calculation of G(z, l, lo) for translationatly invariant systems is relatively 
easy. A direct evaluation of  F(z, l, lo) presents difficulties. It is useful, there- 
fore, to find a relation between these two generating functions so that one 
may be evaluated in terms of the other. 

2.2. Relationship Between the Generating Functions G(z, L Io) 
and F(z, I, Io) 

Let P~(lo) be a vector whose lth element is P~(I, lo) and let ~ be a transi- 
tion matrix for a random walk on a perfect lattice, i.e., ~ ,  = p(l, I'). The 
recursion relation for P.(lo) is 

P,(lo) = ~P~-l( /o)  = ~"Po(/o) (9) 

The generating function for a random walk on a perfect lattice is now written 
a s  

G(z, Io) = ~ z"P~(/o) = ( J  - z~r)-lPo(lo) - ~oPo(/o) (10) 
~ = 0  

From (10) we find 

z~fr = ~'o - J (11) 

Now let ~u be a transition matrix for a random walk on a lattice with traps. 
Then 

~ = ~ ( J  - 2 )  + ~ (12) 

where ~ is the projection onto traps, i.e., -~H, = 8~,z, for l trapping and zero 
for l nontrapping. Let Q,(/o) be a vector whose/ th  element is Qn(l, lo). The 
recursion relation for Q,(/0) is 

Q.(lo) = ~ Q . -  1(lo) = ~N"Qo(lo) (13) 

and the generating function for a random walk on a lattice with traps is 

F(z, lo) = ~ z"Q.(lo) = ( J  - z~D-ZQo(lo) -- ~Qo(/o)  (14) 
r t = 0  

Hence 

~ o ( J  - z ~ )  = ~ [ ~ r  - z ~ ( J  - 2 )  - z .~ ]  = J 0 5 )  
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or since fr 1 

and 

= J -  z ~  

(~o -1 + z ~  - z~)~o = J (16) 

~o = f~o - Z f ~ o ~ o  + Zfqo~o (17) 

Using (11), we get finally 

( J  - ~)~o = fqo - (1 - z)fr (18) 

which allows evaluation of ~o given fr 
The generating function used in calculations was defined in (8) and, in 

terms of ~o, is given by 

F(z, l, 10) = q0r(l).~0Q0(/0) (19) 

From (18) 

F(z, l, lo) = 6(z, l, lo) + ~ F(z, l', lo)[(z - 1)G(z, 1, l') + 8z,,] (20) 
l' traps 

Note that this relation is valid whether or not the random walk is trans- 
lationally invariant. 

2.3. Mean  First Passage Times 

The theory of MFPT as evaluated from solutions of master equations 
was reviewed by Weiss. (9) In the theory of random walks, the MFPT is given 
in terms of the average number of steps for absorption. The relation between 
the two is simply that the master-equation MFPT is the random-walk one 
times the average time between steps. (7) The relation between the MFPT 
and the generating functions of the random walk is established with the 
following argument (8): 

Q~(l, lo) was defined as the probability of being at site l after n steps if 
the motion started at l0 (nontrapping site), in the presence of traps. The 
probability of not being trapped by the nth step is 

y Q.(z, lo) 
I nontrap 

The probability of being trapped on or before the nth step is 

1 - ~ Q.(t, lo) 
l nontrap 

The probability of being trapped on the nth step, r/n, is 

~n = [1 -- lno~apan(l, lo) ] -- [1 --lnon~tra p an_l(l, lo)] 

= ~ [a._l(l ,  lo) - a.(l,/0)] 
l nontrap 
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co n The average number of steps for trapping is (n)t~ = ~,=o ~,, or 

yo)-Q.(Z, to)] } (21) 

But we also have 
co 

8F~ 
F(z, l, lo) = ~ z'~Q.(l, lo) ~ Yz .=1 = nQJl ,  lo) (22) 

r i , = O  r t = l  

and hence (21) can be written as 

(n)tr = - F z  (1 - z) 

On the other hand, 

and 

E F(z, l, Io)] (23) 
l n o n t r a p  z = I 

E F(z, l.'o) = ~ z " ~  Q.(,, lo) = ~ z ~ = 1 (24) 1 - - z  
1 ~ = 0  I ~ . = 0  

1 E F(z,l, lo) ~,  F(z, t, lo) = 1 - z ,trap 
I n o n t r a p  

so that 

8 
(n)tr = ~z [(1 - z) ~ F(z, l, lo)]~= 1 (25) 

I t r a p  

By calculating G(z, l, lo) and finding F(z, I, lo) through (20) we are able 
to calculate the MFPT simply by differentiation. In order to obtain the 
MFPT in real time we have to multiply (25) by the average time between 
steps % .(7) 

3, T H E  M O D E L  

We derive various necessary expressions for a specific model of transi- 
tion probabilities, first for the perfect 1D lattice (no traps) and then for a 
lattice segment bounded on each side by trapping sites. 

3.1. Random W a l k  on a Per fec t  Lat t ice (No  Traps)  

Consider a master equation with translationaUy invariant transition 
probabilities per unit time given by 

ko exp [ - a ( l '  - 1)], l ' > 1 
kt-.v = ko exp[b(l' - l)], 1' < l 

(26) 
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N o t e  t h a t  in  the  m a s t e r  e q u a t i o n  kz~z is unspeci f ied .  C o r r e s p o n d i n g l y ,  we 
c h o o s e  a r a n d o m  w a l k  wi th  the  m e a n  t ime  b e tween  s teps  ~-~ = e/ko a n d  j u m p  
p r o b a b i l i t i e s  f r o m  l to  l ' :  

~ c e x p [ - a ( l ' -  l)] ,  l ' -  l > 0 

p( l '  - l)  = ~c  exp[b( /  - /)],  l '  - l < 0 (27) 
/ 
kc ,  l '  - l = 0 

where  a / >  b > 0. The  n o r m a l i z a t i o n  c o n s t a n t  is 

(1  - e - ~ ) ( 1  - e - ~  E~% ( 2 8 )  
c = 1 - e -('~+b) = E~ + ~b - %% 

w h e r e e ~ - - -  1 -  e -  ~ a n d % -  1 - e -b .  
The  gene ra t i ng  func t ion  fo r  this  r a n d o m  w a l k  on  a pe r fec t  l a t t i ce  is 

c a l cu l a t ed  in  A p p e n d i x  A,  w i th  the  f inal  resu l t  

fx~- 'o f (z) ,  l > lo 
! 

G(z, l - lo) = ~x~ ~  ~f(z), l < lo (29) 
/ 

[.1 + f ( z ) ,  l = lo 

where  

x l  = e - a g ( z )  

X~ = e - b g ( z )  

g(z)  = ~ ( 1  + e ~+b - e~+%~%z) (30) 

- [(1 + e ~+b - e~+OE~%z) 2 - 4e~+b] 1/2} 

[g(z)  - 1][e a+b - g(z)]  
f ( z )  = g(z)[(1 + e ~+b - e~+%~%z) ~ - 4e~+b] 1/2 

The  p e r t i n e n t  p r o p e r t i e s  o f  the  r a n d o m  w a l k  on  the pe r fec t  l a t t i ce  a re  
the  dr i f t  ve loc i ty  a n d  the d i s p e r s i o n  a r o u n d  the  in i t ia l  po in t .  These  p r o p e r t i e s  

can  be  expres sed  as m o m e n t s  o f  Pn(l - lo), where  lo is the  in i t i a l  s i te ;  the  
m o m e n t s  a re  g iven  by  (2,~) 

(km}n = ~ kmpn(k) = ~m *=0 Z= - ~  ~ 2"(~) wi th  k = l - lo (31) 

F r o m  A p p e n d i x  A we have  

~(~) = 

U s i n g  (31), we f ind 

(e ~ -  1)(e b -  1) 

(e ~ - ~  --  1)(e b+~* --  1) 

e b _ e a 

( ( l - -  10)}, = n (e ~ _ 1)(e b _ 1) 

where  he re  a n d  in  the  res t  o f  this  w o r k  we t ake  a I> b. 

(32) 

(33) 
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The drift velocity is 

<0' - / o ) > . / n ~  = k o ( <  - %)(% + ~ - <%) 
in real time. 

The dispersion is 

< [ ( 1 -  10) - < l -  10>.]~>~ = < ( l -  </),)~>~ 

= nf(e~-- e_2)2 2 -- e,~ - et,} 
~ Ca2% 2 + - -  . EaEb 

(34) 

(35) 

Note  that  in the symmetr ic  case ( q  = %) the dispersion remains propor t iona l  
to n. We shall find tha t  propert ies  of  impor tance  in the r a n d o m  walk on 
lattices with traps,  such as the M F P T  and branching ratio, have different 
behavior  for  the symmetr ic  and asymmetr ic  walks. 

3.2.  R a n d o m  W a l k  o n  L a t t i c e  w i t h  T r a p s  

We consider an infinite 1D lattice such tha t  only l ~ (0, N)  is a non- 
t rapping site. Equivalently,  every l 6 (0, N)  is a t rapping site, with p(0) = 1. 

The pert inent t ime scale in this model  is the M F P T  for  absorpt ion.  As 
the j u m p  probabili t ies are asymmetr ic ,  we are also interested in the relative 
absorp t ion  on the two sets o f  t raps,  as a function of  the initial conditions. 

In  Appendix  B we find the M F P T  as a function o f /o ;  the result is 

%% lo + ( N -  lo)~ N - N~N-lo 
<n)tr = 1 + Ea - % 1 - /x N 

+ {(%~n-Zo - <)[N~N(I - ~) - V(1 - ~N)] 

+ (EbmN __ Ea~N-Zo)[1 __ ~N __ N(1 -- ~)]} 

• ( ( l -  ~ ) ( 1 -  t~n)(~ - ~ N ) ) - x  (36) 

where/~ = e b- a ~< 1. I f  all initial states are equally probable ,  we can average 
over  lo to get 

<n)tr(a, b) 
1 N - 1  

- N -  1 ~ <n>tr(a,b, lo) 
l = l  

1 N N(1 - / x ) ( 1  + / x  ~ ) -  (1 +/x)(1  - / x  n) q% 
= 1 +  

2 N -  1 (1 - / x ) ( 1  - /,N) q _  % 

+ {[N%t~(1 - ix ~-~) - (N - 1)q(1 - #)][mtxN(1 -- ix) -- t~(l -- t~N)] 

+ [ ( N -  1)%~v(1 - /~) - Nq/~(1 - /~N-~)][1 -- p s _ W(1 -- /~)1} 

x ( ( N -  1 ) ( 1 -  t~)z(1 - ixn)(~ ~q txN]/);-1 (37) 

I t  is interesting to consider the limit o f  (37) for  large N. We shall see that  the 
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scaling of the MFPT is very different for symmetric and asymmetric random 
walks. Remembering that limN.~ o~/~N = 0, we have 

1 eb(2 - %) N + O ( 1 )  (38)  (n)tr(a, b) = 2 q - % 

in the limit of large N. Notice that (38) diverges as we approach the con- 
dition for the symmetric walk (% = Eb). 

3.3. Branching Rat io 

The asymmetry in the jump probabilities is reflected in the form of the 
branching ratio, which is defined as 

R(lo) = Q ~ ( I -  lo) Qoo( / -  /o) (39) 
I = N  ! o o  

where Q ~ ( 1 -  Io) is the stationary distribution, which, in the presence of 
absorbing states, depends on the initial state. 

We calculate the branching ratio in Appendix C, and the result, as a 
function of Io, is 

R(lo) = E~ %/~N-Zo - % / z  N 
% q _ %tzN_lo (40)  

The branching ratio need not be unity even in the symmetric walk since lo 
need not be at the center of the interval (0, N). [The result for R in the sym- 
metric case is (C13).] 

It is instructive to study (40) in the limit of large N. As tz < 1, and if 
Io is somewhere in the middle of (0, N), i.e., not too near to N, then R -~ 0 
as N - +  ~ ,  unless q = eb. Thus for a large range of initial conditions, 
absorption occurs at only one of the two available branches. (All the walkers 
are trapped on the left, since a > b.) 

3.4. The Limit  of  a S y m m e t r i c  Process 

We want to take the limit a --~ b such that a />  b. Let a = b + 8. Then 
/~ = e -~ and lim0~o+ is equivalent to lim,_.l_. Thus % remains unchanged 
but q = 1 - tz(1 - Eb) and E~ = eb for /~ = 1. By repeated application of 
L'Hospital 's rule we find 

lim q%[lo + ( N -  lo)/Z N - N~N-~o] = 1 eb 2 l o ( N -  lo) (41) 
. - . 1 -  ( ~  - %)(1 - /z N) 2 1 - % 

lim ({(%t~z~-'o - q)[N/z~(1 - tz) - /z(1 - IzN)] 

+ ( % ~  - , J - , o ) [ 1  - ~ - N ( 1  - ~)]} 

X{(1- - /Z) (1 - - /~N) [  ~-%Eb e~/zN])-~ 

= � 8 9  1),~, (42) 
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so that 

I ( N _  1)~ + 1 , a  lo(N-lo) (43) (n)tr(10, a) = 1 + ~ 2 1 - ,----'-~ 

where the set of nontrapping sites is (0, N) and Io is the initial state. Assuming 
that all initial states are equally probable, we find 

N - 1  

(n----)er(a) = ,o~=l(n~r(l--_~ a) 

1 1 e'~-------~2 N(2N - 1) (44) = 1 + ~ ( N -  1)~=+ 1 2 1 -  % 

Thus, in the limit of large N 

1 e= 2 N2 ' N--+~  (45) 
(n)tr(a) ,~ 6 1 - ,~ 

Note that in the limit a -+ oo, (n)t~(/o, a) oc e ~ for any N. 
It is of interest to compare the MFPT for symmetric and asymmetric 

walks in the limit of large N (size of the nontrapping subset of the stochastic 
space). For a given nonzero e~ - eb, there exists an N such that total 
absorption is faster in the asymmetric random walk. On the other hand, for 
any large but fixed N, there exist values of a and b such that the symmetric 
walk leads to faster absorption. Thus we see that the limits N---~ oo and 
a--~ b do not commute in this model. In most cases of  interest the size of 
the system is fixed. In this case, if we vary external conditions which control 
parameters a and b, such that a --~ b, we see that the MFPT diverges. This 
behavior, together with the nonanalytieity that is associated with the sym- 
metric limit, bears some resemblance to properties of critical phenomena. 

4. C O N C L U D I N G  R E M A R K S  

The scaling of the MFPT with the size of the nontrapping subspace N 
was the subject of a thorough study in the case of nearest neighbor random 
walks. (8) The general conclusion is that for symmetric walks the scaling 
depends strongly on the dimensionality of the problem, 

I N , 1D 

(n)tr N~o ~N log N, 2D (46) 
/ 

[.N, 3D 

The MFPT for the asymmetric nearest neighbor random walk scales 
like N, for large AT, i.e., 

(n)tr "~ N, 1D (47) 
N-oo0  
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Thus the first conclusion [from Eqs. (45) and (38)] is that  the range o f  j u m p  
probabilities does not  change the scaling with N. We also see that  the M F P T  
for  1D asymmetric  walks has the same scaling proper ty  as the one for  the 
symmetric  3D walk. 

A P P E N D I X  A .  C A L C U L A T I O N  3 O F  G(z, I -  Io) 

In  order  to evaluate G we need to know A(~) given by 

e ~ + v -  l (A1) 
a(r = 2 ,  P(k)e'k~ = c ~=_= (e "-~0 - 1)(e b+~*-  1) 

Therefore G(z, l - lo) = G(z, m) is 

1 ( "  e-~mr ~-i~ - 1)(e ~+~r - 1) 
G(z ,m)  = ~ d de ~ ~)~u  ~ T) g (h2)  

where ff = e(e a+b - 1)z = e~+%~%z. 
We need to consider three situations: m > 0, m < 0, and m = 0. 

Using the calculus o f  residues, we find 

G(z, rn) = xzmf(z), 

o(z, m) = x V(z), 

where 

m > 0  

m < 0 (A3) 

x l  =- e-~g(z) 

x2 -- e-bg(z) 

g(z) - -}{(1 + e a+b - e'~+%,~%z) 

- [(1 + e a+b - e~+%~%z) z - 4e~+V] l/z} 

[g(z) - 1 ][e ~+b _ g(z)] 
f ( z )  =- g(z)[(1 + e ~+b - ea+%,~bz)2 - 4e~+b] 1t2 

(A4) 

G(z, O) = 1 + f ( z )  (A5) 

A P P E N D I X  B. C A L C U L A T I O N  OF M E A N  N U M B E R  OF STEPS 
BEFORE T R A P P I N G  

F r o m  (25) 

<n>t~ = (1 - z) ~ ,  F(z, l, lo) (B1) 
l trap z = l 

where, f rom (20), 

F(z, l, lo) = O(z, l, lo) + ~ F(z, l', lo)[(z - 1)G(z, 1, l ' )  + 3,,,,1 (B2) 
1' t r ~ P  

The calculations presented here are in a shortened form. Further details may be 
obtained by writing to the authors. 
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Equation (B2) can be rewritten as 

F(z, l - lo, lo)G(z, O) 
G(z, l - Io) 

1 - -  Z 
G(z, l - l')F(z, l' - lo, lo) (B3) 

1' t r a p  
I ' ~ 1  

[From now on we denote F(z, 1' - lo, lo) by F(z, f '  - Io).] Since the trapping 
sites are in [ - m ,  0] and [N, m] we need to consider the following cases: 

(i) - m  ~< l ~< - 1 ; l < lo. Then, from (B3), (A3)-(A5) 

'~=N l ' -  lo)x~ -z x~2~ = F(z, l - lo)h(z) + F(z, 
t - -  Z 1 ' =  

(ii) 

, . 1  

+ ~ F(z, 1 ' -  lo)x~-r+ F(z, 1 ' -  lo)x v - '  (B4) 
l ' =  - o o  l ' = / + 1  

N +  1 ~< l~< r e ; l >  lo: 
r 

xi - 'o  = r ( z ,  t - lo)h(z) + ~ F(z ,  r - to)XF" 
1 -z v=- |  

+ ~ r(z, r -  to)Xi-" + r ( z ,  r -  lo)X~-' (BS) 
I ' = N  l ' = l + l  

(iii) 1 = 0 ,  I <  1o: 

l o - 1 ~_~ 
x2 - F ( z , - lo )h ( z )  + ~ F ( z , l ' -  lo)x;e + Z F ( z , l ' -  lo)x~" (B6) 

1 -z z,=-~ I '  = N  

(iv) l = N , l >  lo: 

0 

xf-'o = r(z,  U -  tolh(z) + x d  
1 - -  Z l'=-~ 

+ x y  ~ ~ F ( z , l ' -  lo)x~ 
/ ' = N + I  

The function h(z) is defined as 

a(z,O) 1 +  1 
h(z) -- f ( z )  = f(z---) 

Define 

A ~- 
- 1  

F(z,  l '  -- lo)xrl" 
1 " =  - - ~  

F(z,  l '  - l o )x f  t" 

(B7) 

(B8) 

(B9a) 

B - ~ F(z,l'  - lo)x~ 
I'=N+I 

(B9b) 
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Summing (B4) and (B5) over  l in the appropr ia te  range, we get, af ter  some 
algebra 

( ( x l  ) ~ + 1  
x.___.L_I x2 ~ 01 = h + F(z, - lo) ? ~ - -  F(z, N - lo) 

h +  1 -  xa + l - x 2 /  ~ a - xz 

XZO + 1 i X 2 
+ 2 + - - A  - - B  

(1 - z ) ( 1  - x 2 )  1 - x l  1 - x2 

( + 
h +  1 - ' x l  x - x 2 /  

where 

(too) 

X2 \ XN1 + 1  

) F(z, - Io) +l_---Z- E F(~, U - to) 1 -  x-----Z~ 

xf-lo +1 xf +~ x J  
- -  B 

+ ( 1  - z ) ( 1  - x l )  1 - x l A  + 1 - x2 

( B l l )  

o 

o~ = ~ F(z, l -  lo) (m2a) 
Z =  --cO 

o~ -- ~ F(z, t -  to) (mZb) 
I=N 

A and B can be found f rom (B6) and (B7) in te rms of  F ( z , - 1 o )  and 
F(z, N - lo) as follows: 

lo-N 1 -- h Xl~ -~~ - -  X2 hx2N --XlN F(z, - l o )  + N F ( z , N - l o )  
A = (1 - z)(xl  N - x y  N) + x l  ' - ~  7_ x~  --~ x J  - x'~ 

(ma) 

xiZ~(x~ ~ - x{to) x~N(1 - h) ~.. Io) + h - x~NXZNF(z ,N_  
B = (1 - z)(xl  ~ - x~  N) + ~ - - x ~  ~ r t z ,  - xl- ~ - x~_----- ~ lo) 

(B14) 

In  order  to relate F(z, - I o )  and F(z, N - 1o) to 01 and 02 we m a k e  use o f  
(14), i.e., for  / t rapping  

F(z, l -  lo) = z ,  ~ p(l  - l ')F(z, l '  - lo) + zF(z, l - lo) (BI5)  
1 n o n t r a p  

Rearranging  and summing  over  l a [ - 0 %  0] we find 

0 o 

(1 - z) ~ F(z, l - to) = z ~.  F(z, r - lo) ~ p(t  - r )  
t = - ~ / ' n o n l ; r a p  I = - 

- 1  z c - ~  , .o~r..  F(z' r - t~ (B16) 
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O n  the  o t h e r  h a n d ,  d i rec t ly  f r o m  (B15) a n d  n o t i n g  t h a t  p ( - l ' )  = ce -~v fo r  
l '  n o n t r a p p i n g ,  

(1 - z ) F ( z ,  - 1 o )  = z c  ~ ,  F ( z ,  1' - lo)e -by (B17) 
l "  n o n t r a ! o  

so t h a t  

F i n a l l y  

S imi l a r ly  

(1 - z)O~ = (1 - z ) F ( z ,  - l o ) / ( 1  - e -b) 

F(z ,  - / o )  = %01 (B18) 

F(z ,  N -  lo) = E=02 (B19) 

C o m b i n i n g  (B10), ( B l l ) ,  (B13), (B14), (B18), a n d  (B19), we f ind,  a f t e r  s o m e  

a lgeb ra ,  

r + %An01  + q A m 0 2  (B20) II01 = 1-'-'7-~_ z 

where  

r + %A2101 + qA2202 (B21) H02 = 1 - z 

Xl 
H = (1 - x~)(1 - x 2 ) ( x J  - x ~  N) h + 1 - x-----~ 

lo - N )  4~ = ( 1  - X l X ~ ) ( x ~ - ~ o  - x ~  

42 (1 ~ - n - N Z J o  = - x l x 2 ) x l  x2  V,2 - x ~  z~ 

A n  = (h - 1)[xlN(1 - x l )  + x l x y N ( 1  - x2)] (B22) 

A12 = - ( h  - 1)(1 - x l x 2 )  

A2I = - (h - 1)(1 - x l x 2 ) x l N x ~  N 

Az2 = (h - 1)[xIN(1 - x2) + x~-N(1 - x l ) ]  

The re fo re ,  so lv ing  (B20) a n d  (B21), we f ind 

1 r  - %A22) + r (B23) 
ol = 1 - z ( n  - < & : ) ( n  - % A n )  - %%A12A21 

1 r + ~2(II - % A n )  (B24) 
1 - z ( n  - q & : ) ( n  - % & 1 )  - % % A l ~ A ~ l  

2 ~ - -  

A c c o r d i n g  to  (B1) 

( n ) , ~ r  = F z  { ( 1  - -  z ) ( O ~  + - -  - -  
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where  

P(z) = r  + %&j, - %&~,) + r  + %&~ - %&j,) 

F i n a l l y  

(H - % A n ) ( H  - %A22) - %%AJ,2A2J, 

,a% lo + ( N -  lo)~ ~ - Nt ,~-~o 
Q't>t r = 1 + -  E,~ - Eb 1 - p N 

+ { ( % / r  - %)[N/zN(1 --  /z) --  /z(1 --  / v ) ]  

+ (%~N _ edd~-zo)[1 _ I~N _ N(1 - t~)]} 

x ( ( 1 -  / 0 ( 1 -  / z ~ ( ~  - e~/~N~-J,]) 

w h e r e / z =  e ~- ~ ~< 1 , %  = 1 - e - a , %  = 1 - e - ~  

(B25) 

(B26) 

A P P E N D I X  C. B R A N C H I N G  RATIO 

W e  define the  b r a n c h i n g  r a t i o  R as 

R = ~=N ~ Q |  lo)/z= ~ - ~ Q ~ ( l -  lo) (C1) 

where  Q ~ ( l -  lo) is the  s t a t i o n a r y  d i s t r i b u t i o n ,  which ,  in  the  p re sence  o f  
a b s o r b i n g  s tates ,  d e p e n d s  on  the  in i t i a l  s tate .  U s i n g  the  r e c u r s i o n  r e l a t i o n  
(13), we have ,  fo r  l t r a p p i n g ,  

N-I n-i 

Q,~(I- lo) = c ~ e -aCz-r~ ~ Q~(l' - lo), 
/ ' = 1  k=j ,  

N-I n - 1  

a,~(l-  lo) = c ~ e -b~r-~, ~ O~(l' - lo), 
/ ' = 1  k = l  

There fo re ,  the  s t a t i o n a r y  d i s t r i b u t i o n  is g iven  b y  

N - !  

Q ~ ( l -  lo) = e ,,,~'=1= e-ar l' - lo), 

N - 1  

Q ~ ( l -  lo) = c "~'=1 e-~W-~F(l' l' - lo), 
l = 

F r o m  (14) we have ,  a f t e r  s o m e  a l g e b r a ,  

Qo~(l- lo) 
l = N  

0 

1o)= 
l= --~ 

N ~< l ~< ~ (C2) 

- o o  ~< l~< 0 (C3) 

N ~< l ~< oo (C4) 

- o o  < l < 0 (C5) 

e - a  
1 - e - a  [F ( I ,  N -  1 - Io) - 3N-lao]  (C6) 

e - b  

1 - e -b [F(1,  1 - lo) - 3j,,Zo] (C7)  
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and 

Eb F ( 1 ,  N -  1 - l o )  - 8n-1,1o 
R = / z ~  F(1, 1 -- lo) -- 81,~ o 

Fo r  I non t rapp ing  we have, f rom (20), 

F ( 1 , 1 -  1o) = GO, l -  1o) - l j m  (1 - z ) (  
-- U =  --oo 

+ ~= a(z,  l - l')F(z, l' - lo) 

which is found to be 

F(1 ,1  - lo) = 

and 

F(1, N -  1 - lo)= 

%%(% - %~) 
(~o - %)(---%~ - - ~ )  (% - , j - ~ o ) ,  

6aEO(Ea - -  Eb~s ) E a ~ N - l o  - -  Ebls N 

(,~ _ %)(%2 _ Eb2~N) 

(c8) 

G(z, l - l')F(z, l' - lo) 

lo # 1 (C9) 

l o # N -  1 

(ClO) 

F o r l =  1 , 1 o =  1, a n d f o r l = N -  1, l o = N -  1, 

%%(% - %t0 FO, O) = (% _- %)(---~j _- ,-~2~N) (% - %~N-1) + 1 (ClO 

The branching ratio, therefore,  is 

R(lo) = "2 "dzn-z~ -- %~s "~ % _ Ebtz s_  to (C12) 

The branching ratio in the symmetr ic  case is found with the L 'Hosp i t a l  rule 
to be 

1 + (lo - 1)% 
R ( / o , a ) =  1 + ( N -  1 o -  1),~ (C13) 
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